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This paper considers the dynamic stability of plane transverse oscillations of two cantilevered
pipes interconnected along their outer radii and conveying different fluids with different flow
speeds. Stability curves depicting the relation between the two flow speeds at the stability
boundary are shown for a number of fluid-structure mass ratios. One fluid flow may dissipate
energy delivered to the system by the other, if the speed of the first one is not too large. One pipe
can thus be thought of as a stabilizer to the other, with the aim of increasing the critical speed of
the primary flow. The stabilizing effect of one fluid on the other is clarified through consider-
ations of an energy equation together with flutter oscillation shapes. The energy equation is also
used to derive a relation between the two flow speeds and the phase speed of the flow-induced
travelling bending wave. ( 1999 Academic Press
1. INTRODUCTION

DYNAMIC STABILITY of cantilevered fluid-conveying pipes has formed the subject of a large
number of papers since the early 1960s. The transfer of energy between the flowing fluid and
the pipe was discussed by Benjamin (1961), thus explaining the mechanism behind the
flow-induced unstable oscillations (‘‘flutter’’) that occur when the flow rate exceeds a critical
value. The effect of system parameters (e.g., mass ratio, pipe dimensions, damping, gravity)
has been studied extensively, and recently nonlinear dynamic aspects have been studied
intensively. Reviews were published by Paı̈doussis & Issid (1974), by Paı̈doussis (1987) and
by Paı̈doussis & Li (1993). Interest in the fluid-conveying pipe problem has been driven
partly by the fact that the basic fluid-structure coupling is similar to a variety of ‘‘flutter
problems’’, including flapping flags and sails (Lamb 1932; Taneda 1968), aircraft wings
(Dowell et al. 1989) and human snoring (Huang 1995). The problem of flutter induced by
a pure rocket thrust, which has applications to missiles, spacecraft and space structure, is
also closely related (Sugiyama et al. 1995a, b).

Most studies are concerned with a single cantilever conveying a single fluid. An exception
is a paper by Hannoyer & Paı̈doussis (1978) on the combined effects of simultaneous
internal and external axial flows, which brings forth many interesting aspects of two
interacting fluid loadings and concludes that ‘‘the state of the system with both internal and
external flows present cannot in general be inferred from knowledge of its state when
subjected separately to the internal and the external flow.’’ It was shown that if the flutter
-Present address: Vibration and Noise Control Laboratory, Takasago R&D Center, Mitsubishi Heavy
Industries, Ltd., 2-1-1 Shinhama, Arai-cho, Takasago, Hyogo Prefecture, 676 Japan.

0889—9746/99/020251#18 $30.00 ( 1999 Academic Press



252 M. A. LANGTHJEM AND Y. SUGIYAMA
boundary has been passed due to the action of a single fluid flow, the system can be
restabilized by increasing the flow rate of the other fluid. Paı̈doussis & Besanion (1980)
generalized the analysis to an array of cylinders; however, they considered simply supported
pipes where divergence is the only possible type of instability. Examples of applications
include axial heat exchangers and stream generators.

The object of the present paper is to further clarify the effects of two interacting axial fluid
flows on the dynamic stability of a cantilevered pipe system. Due to the great complexity of
the external flow model, Hannoyer & Paı̈doussis (1978) could not present an extensive
parameter study. However, their results were compared with experiments and reasonable
good agreement was found. The present paper considers a system of two cantilevered pipes,
interconnected along their outer radii and thus, interaction between two internal flows.
Applications may be found in the offshore industry, for example in connection with drilling
for oil.

The description of an internal flow is considerably simpler than an external flow. The
fundamental coupling between the structure and axial flow is similar. However, in the case
of external flow it is modified by boundary layer effects. [Hannoyer & Paı̈doussis (1978)
show how this may be taken into account.] Furthermore, the dynamics is altered by axial
and lateral viscous forces. Thus, a cantilever subjected to external axial flow loses stability
by divergence. At a higher flow speed flutter is observed. To focus on the inviscid fluid
loading, the simplest configuration is considered in this paper. The effects of damping and
gravity are thus not taken into account.

The paper is divided into seven sections. Section 2 describes the analysis of plane
transverse oscillations. As the cross-section is not axisymmetric, the fluid loading may
induce torsional instability. Section 3 addresses this problem, applying the equations
derived by Hermann & Nemat—Nasser (1967) for a two-pipe system having a cross-section
with two axes of symmetry. For three specific examples, it is found that transverse flutter
occurs at much lower flow speeds than torsional instability. In light of this, only transverse
oscillations are considered in the remainder of the paper.

Section 4 presents stability diagrams, depicting the relation between the two flow speeds
at the flutter limit for a number of different fluid—structure mass ratio parameters. The
case of simultaneous ‘‘forward’’ and ‘‘reverse’’ flow in a system of two identical
pipes conveying identical fluids is also discussed, however noting that the application
of the same boundary conditions to forward and reverse flow may be questioned [see
Paı̈doussis (1997) for a discussion]. Within the framework of the present theory, the
pipe with forward flow provides a very effective means of stabilization of the aspirating
pipe as the forward flow cancels out the negative fluid damping induced by the reverse flow.
The resulting fluid loading is thus a pure ‘‘follower’’ load, as by Beck’s column [see,
e.g., Bolotin (1963)]. Examples of aspirating pipes include deep-water risers for ocean
mining (Paı̈doussis & Luu 1992) and the ‘Deep Ocean Water Upwelling Machine’ for
increasing the primary production in the sea and creating new fishing grounds (Ouchi
& Nakahara 1998).

In Section 5, the equation for energy balance at the flutter limit of Benjamin (1961) is
applied in the deviation of a relation between the two flow speeds and the phase speed of the
flow-induced travelling bending wave. It is found that, at the flutter limit, the phase speed at
the end of the pipe system equals the ratio (total momentum flux)/(total mass flow rate). For
a single pipe, this ratio reduces to the (single) flow speed, in agreement with the result for
a free axisymmetric jet of Batchelor & Gill (1962).

In Section 6, the physical understanding of the stabilizing effect one fluid may have on the
other is clarified by considering Benjamin’s energy equation together with flutter oscillation
shapes. Finally, the main conclusions are summarized in Section 7.
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2. EQUATION OF MOTION FOR TRANSVERSE OSCILLATIONS

The system is sketched in Figure 1. The undisturbed flow of incompressible fluid through
the pipes is in the direction of the axis x, entering at x"0. Transverse deflections occur in
the vertical plane in the direction of the axis y. One pipe, to be referred to as pipe A, has
specific mass m

A
and bending stiffness EI

A
. The fluid flowing through it has specific mass

M
A
. For the other one, pipe B, the corresponding quantities are m

B
, EI

B
and M

B
. Structural

(internal) and aerodynamic (external) damping is ignored. For this system, Benjamin (1961)
showed that Hamilton’s principle can be written as
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Figure 1. The cantilevered two-pipe system.
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Ignoring shear deflection and rotatory inertia, the energy and work terms are:

(i) kinetic energy of the empty pipes
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(ii) kinetic energy of the enclosed fluid
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(iii) elastic energy of the pipes
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(iv) work done on the structure by the conservative part of the fluid forces
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(v) virtual work done on the structure by nonconservative part of the fluid forces
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In a cantilevered fluid-conveying pipe the Coriolis force always acts as a damping mecha-
nism which will be referred to as fluid damping [see Chen (1981, 1987), and Section 5.1]. The
reaction force due to the momentum flux out of the free end, M

A
º2#M

B
»2, acts as

a ‘‘follower’’ load, as in Beck’s column.
By introducing the dimensionless quantities
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the energy terms can be written in dimensionless form, as
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In order to determine the stability of the oscillations, the pipe-system is divided into
a number of finite elements. Within each element, the lateral deflection is represented in
complex form as

(g
c
)
e
"Nd

e
, (14)

where N is a real row vector of shape functions [Hermitian polynomials, e.g. Cook et al.
(1989)] and d

e
is a complex column vector representing nodal displacements and rotation in

one element. It is noted that the physical deflection is given by g (m, q)"ReMg
c
(m, q)N. By

inserting the energy expressions and equation (14) into equation (1) and carrying out the
variations, the equation of motion is obtained in the finite element form

Md® #C(u, v)d0 #[S!Q (u, v)]d"0, (15)

where ( 0 )"L( )/Lq. The boundary conditions used and implemented in equation (15) are

g (0, q)"g@ (0, q)"0 and gA (1, q)"g@A(1, q)"0, (16)

where ( )@"L ( )/Lm. With the column divided into N
e
finite elements, the matrix system (15)

is of size 2N
e
]2N

e
. The mass matrix M and the stiffness matrix S are symmetric, while the

Coriolis matrix C and the load matrix Q are nonsymmetric.
By assuming an exponential time dependence in the form

d (m, q)"d (m) exp (jq), j"Rej$iIm j"a$iu, i"J!1, (17)

an eigenvalue problem in j is obtained. In order to determine these eigenvalues, equation
(15) [with equation (17) inserted] is rewritten as
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The QR-algorithm [e.g., Press et al. (1992)] is now applied to equation (18). To plot stability
diagrams, pairs of the smallest values of u and v which correspond to a"0 (the stabil-
ity/instability boundary) in equation (17) must be found. This is done by using the bisection
method. For calculation of the stability diagrams, the number of finite elements were ten,
N

e
"10. For the plots of flutter vibrations, 20 finite elements were used.

3. TORSIONAL INSTABILITY

The axial flow through the pipes may also cause torsional instability. The work of Hermann
& Nemat-Nasser (1967) can be applied to two-pipe systems having a cross-section with two
axes of symmetry. As the cross-section is closed, warping cannot occur and thus, torsional
flutter cannot occur. The differential equation for torsional buckling is

Mr2 (M
A
º2#M

B
»2)!GJN

d2u

dx2
"0, (19)

where u is the torsion angle, r is the polar radius of gyration and GJ the total torsional
stiffness of the cross-section. The boundary conditions for the cantilever are: u (0)"
du(¸)/dx"0. Torsional buckling occurs when

M
A
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TABLE 1

Geometrical data and calculated values of the critical flow
speeds for transverse flutter and torsional buckling for three

different silicone rubber two-pipe systems conveying water

Test pipe A B C

¸ [m] 0)530 0)530 0)505
D [m] 0)01302 0)00931 0)0122
d [m] 0)00683 0)00684 0)01002

b 0)249 0)505 0)780
w
&-

6)20 9)36 13)35
w
503

83)25 105)95 73)88
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or, in terms of the dimensionless flow speeds defined in equation (8),

u2#v2"
GJ

EI
A

¸2

r2
"

16

1#l
¸2

D2#d2
, (20)

where D and d are the external and internal pipe diameter, respectively, and l is Poisson’s
ratio.

To get some idea of whether or not torsional buckling is likely to occur before the onset of
transverse flutter, two identical silicone rubber pipes conveying water at identical flow
speeds u"v"w are considered. The data for three different pipes (test pipe A, B and C, not
to be confused with the notation ‘‘pipe A’’ and ‘‘pipe B’’ used elsewhere in this paper) from
Sugiyama et al. (1984) are used and Poisson’s ratio is assumed to be 0)5. The results are
summarized in Table 1. It will be seen that the torsional buckling speeds w

503
are much

higher than the transverse flutter speeds w
&-
.

As pointed out by Nemat—Nasser & Hermann (1966), cross-section with just one axis of
symmetry may lead to coupled torsional—transverse bending oscillations. In light of Table 1,
however, the development of a theory accounting for such coupled oscillations has not been
pursued in this study and in the remainder of the paper, only plane transverse oscillations
will be considered.

4. NUMERICAL RESULTS

4.1. SAME MASS RATIOS

Figure 2 shows the stability diagram for cases where the two pipes and the fluid therein are
identical. This means that the fluid mass ratios b

A
"b

B
"b, the total mass ratio k"1 and

the stiffness ratio p"1.
For b"0

`
(a very small positive value; 10~9 in the numerical calculations), the fluid

damping is insignificant and the stability curve is just the circle section (u2#v2)/2+(4)19)2.
The value 4)19 is in agreement with the critical flow speed for a pipe with a small but
non-zero b found by Gregory & Paı̈doussis (1966). For larger values of b there are regions
where the slope of the stability curve, du/dv, is positive. Physically this means that one fluid
extracts energy from the other and thus stabilizes the system. For b"0)50, 0)75 and 0)90
there is an interval of v(u) where, after loss of stability, further increase in u(v) implies that
stability is regained and then lost again by continued increase of u (v). Such stability curve
inflections are characteristic for the cantilevered fluid-conveying pipe. They are also seen,
for example, in stability diagrams depicting the critical flow speed as a function of the mass



Figure 2. Stability diagram for two identical pipes conveying identical fluids at different flow speeds u and v.
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ratio b (Gregory & Paı̈doussis 1966) and as a function of a gravity parameter (Bishop
& Fawzy 1976). An explanation is provided by Figure 3 which is for b"0)75. The leading
eigenvalues, i.e., those eigenvalues having the largest real parts, are depicted as functions of
the flow speed u in pipe A. The flow speed in pipe B is constant, v"7)50. Only the upper
half-plane is shown, but as the matrices in equation (15) are real, all branches have
a mirror-image in the lower half-plane. The branch labeled I becomes unstable for
u"13)60, is restabilized by u"14)71, and then again becomes unstable for u"15)96.
There is another way in which inflections on the stability curve can occur, namely if branch
I remained stable for u'14)71 but another branch, II or III say, entered the right half-plane
at u+16.

4.2. DIFFERENT MASS RATIOS

Figure 4 shows the stability diagram for cases where the fluid mass ratio b
B

in pipe B is
varied while the fluid mass ratio in pipe A is held constant (b

A
"0)25). In order to compare

with Figure 2, the total mass ratio k"1 and the stiffness ratio p"1. The figure shows that



Figure 3. Root-locus diagram for b
A
"b

B
"0)75. The flow speed u in pipe A is varied, while that in pipe B is

constant and equal to v"7)50.
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if the purpose of the flow in pipe B is to stabilize the system, such that the flow speed in pipe
A can be as large as possible, then b

B
should be as large as possible. When b

B
"0

`
,

increasing v implies an increase of the total ‘‘follower’’ end load without significant increase
of the total fluid damping. Therefore, to remain at the stability boundary, u must be
decreased.

The purpose of the root-locus diagrams shown in Figure 5 is to more directly explain the
stabilizing effect one fluid may have on the other. The diagrams are related to the stability
curve for b

B
"0)50 in Figure 4. In Figure 5(a), the fluid in pipe B is still, v"0. Then all roots

are located on the imaginary axis for u"0. Stability is lost at u"6)97 where branch II
enters the right half-plane. In Figure 5(b) the fluid in pipe B has the speed v"5)46,
corresponding to the ‘‘top’’ in the stability curve depicted in Figure 4. It is thus the most
stabilizing speed. In the root-locus diagram, the effect is that all branches j (u) are shifted to
the left. Stability is now lost at u"10)32, also in branch II. The steep top on the stability
curve appears when the ‘‘kink’’ on branch II (present from u"9 to 10) is moved into the left
half-plane.

Figure 6 shows the stability diagram for cases where the fluid in pipe A is very ‘‘light’’
(b

A
"0

`
). It will be seen that a very ‘‘heavy’’ fluid (large value of b

B
) in pipe B and a very

large value of its flow speed v is required to increase the critical value of u. Moderate
Coriolis forces have a destabilizing effect.

Returning briefly to the discussion of torsional buckling in Section 3, by using equation
(20) and assuming that b

A
"b

B
"0)9 is the upper bound of practically realisable b-values,

the following result is obtained. For any b
A
, b

B
3(0, 0)9), torsional buckling will not occur at

lower flow speed than transverse flutter if

1

1#l
¸2

D2#d2
'

1

8
(14)33)2+25)67. (21)



Figure 4. Stability diagram for different values of fluid mass ratio b
B
, with b

A
"0)25. The total mass ratio k"1

and the stiffness ratio p"1.
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4.3. SIMULTANEOUS ‘‘FORWARD AND ‘‘REVERSE’’ FLOW

The case of two identical pipes conveying identical fluids is reconsidered but now the flow in
pipe A is reversed (flow speed u(0). [The same equation of motion (15) and the same
boundary conditions (16) are used.] The stability curves are shown in Figure 7. As shown by
Paı̈doussis & Luu (1985), an aspirating pipe loses, at least in theory, stability by flutter at an
arbitrarily small but non-zero flow speed because of negative fluid damping. (Including
structural damping, or damping from the surrounding fluid, increases the critical flow
speed). As will be seen from Figure 7, the effect of increasing the flow speed in pipe B from
v"0 to values '0 is cancellation of the fluid damping. The total fluid loading is thus
reduced to a pure follower load, as by Beck’s column.

For any non-zero mass ratio b"b
A
"b

B
, the stability curves are straight lines until the

flow speeds reach the values (u, v)"(!4)19, 4)19). [In theory, if the fluid damping is

perfectly cancelled, the straight line continues to (u, v)"M!J(20)05), J(20)05)N"
(!4)48, 4)48). The numerical value of 20)05 corresponds to the dimensionless critical load
P
#3*5

¸2/(EI ) of Becks column, e.g., Leipholz (1980).] By increasing the flow speed in pipe



Figure 5. Root-locus diagram for b
A
"0)25, b

B
"0)50, k"1 and p"1. (a) Flow speed u is varied while flow

speed v"0)0. (b) u is varied while v"5)46.

260 M. A. LANGTHJEM AND Y. SUGIYAMA
B beyond the value 4).19, the critical flow rate in pipe A is gradually reduced for all b-values.
However, the stability curves for b"0)75 and 0)90 also have inflections for u(0.

It has been shown that attaching a pipe with ‘‘forward’’ flow to an otherwise identical
aspirating pipe constitutes a very efficient stabilization aid. As already mentioned in



Figure 6. Stability diagram for cases with a very light fluid in pipe A (b
A
"0

`
, k"1, p"1).

Figure 7. Stability diagram for ‘‘reverse’’ flow in pipe A (u(0) and ‘‘forward’’ flow in pipe B (v'0) (b
A
"b

B
,

k"1, p"1).
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Section 1, however, application of the boundary conditions (16) to the aspirating pipe may
be questioned as the flow into the pipe may not be purely tangential. Flutter instability of
the aspirating pipe has not yet been verified by experiment. In whatever way, attaching
a pipe with a moderate ‘‘forward’’ flow to an aspirating pipe is an efficient means of reducing
the time of transient vibrational response to disturbances, cf. Sugiyama et al. (1996).

5. SOME ENERGY AND BENDING WAVE CONSIDERATIONS

5.1. BASIC EQUATIONS

Benjamin (1961) showed that, during a time interval [q
1
, q

2
] where the shape of

the pipes is the same at q
2

as at q
1
, the energy delivered to the tubes by the fluid is
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given by

*¼
N
"!P

q2

q1

Lg
Lq C (uJb

A
#vJb

B
)
Lg
Lq

#(u2#v2 )
Lg
LmDm/1

dq. (22)

The first term is associated with the Coriolis force. As this term is always negative (for
u, v'0) the Coriolis force acts as a damping mechanism. At the stability threshold (flutter
boundary) the vibrations are of constant amplitude, and over one period, *¼

N
"0. The

pipe deflection can be written in the form

g(m, q)"ReMg
e
(m, q)N"A(m ) exp (aq) cos (uq#h(m) ). (23)

Here A(m) is the amplitude and h (m) is the phase angle. Inserting equation (23) into equation
(22), with a"0, q

1
"0, q

2
"2n/u and *¼

N
"0, gives the phase speed of the travelling

bending wave at the free end, m"1, as

c
1
"

u
k
1

"

u
!(Lh/Lm)m/1

"

u2#v2

Jb
A
u#Jb

B
v

. (24)

Here k
1

is the wavenumber at the free end. Equation (24) is, of course, only valid for

J(b
A
) u#J(b

B
) vO0. When the denominator is zero there is no Coriolis force and thus

no travelling wave. In physical variables, equation (24) takes the form

c
L
"

M
A
º2#M

B
»2

M
A
º#M

B
»

"

total momentum flux

total mass flow rate
. (25)

For a single pipe (v"0, b
B
"0), equation (24) reduces to

c
1
"

u

Jb
A

; (26)

see also Langthjem (1996) and Lee & Mote (1997). In physical variables, equation (26) takes
the simple form

c
L
"º. (27)

The free jet present at x'¸ also performs steady-state oscillations at the flutter-limit and
the wave speed in the pipe at x"¸ must match the wave speed of a neutral disturbance of
the jet for x5¸. This is the case, since equation (27) is identical to the result for a free
‘‘plug-flow’’ jet obtained by Batchelor & Gill (1962).

5.2. SIMPLIFIED CALCULATIONS OF THE CRITICAL FLOW SPEED VALUES FROM

THE PHASE SPEED—FLOW SPEED RELATION

For a single pipe with a given mass ratio b
A
, relations (24) and (26) show that the

dimensionless critical flow speed is directly proportional to the flutter frequency and
inversely proportional to the wavenumber at the free end. For the two-pipe system the
nonlinear connection between the two flow speeds makes the relation less clear. Table 2
gives, for b

A
"b

B
, values of flow speeds u and v, flutter frequency u, tip-end wavenumber

k
1

and tip-end phase speed c
1

at the flutter limit for two cases: (i) when u"v and (ii) when
v has the most stabilizing value such that the maximum value of u is obtained. It will be seen
that c

1
is only slightly larger for configuration (ii) than for configuration (i) in all cases.



TABLE 2

Case of indentical mass ratios b
A

and b
B

(k"1, p"1). Values of flow
speeds u and v, flutter frequency u, tip-end wavenumber k

1
and

tip-end phase speed c
1

at the flutter limit. When vOu, v has the most
stabilizing value which gives the largest value of u

b
A
"b

B
u v u k

1
c
1

0)25 6)21 6)21 13)61 1)10 12)43
0)25 7)51 2)73 13)69 1)10 12)47
0)50 9)32 9)32 26)50 2)01 13)18
0)50 11)84 2)70 25)31 1)76 14)34
0)75 13)14 13)14 44)54 2)94 15)17
0)75 15)94 7)48 41)64 2)72 15)29
0)90 14)33 14)33 45)63 3)02 15)11
0)90 17)36 6)53 44)51 2)93 15)18

TABLE 3

Case of different mass ratios b
A

and b
B

(b
A
"0)25, k"1, p"1).

Values of u, v, u, k
1

and c
1

at the flutter limit. Lu/Lv"0 at the points
(u, v) for which u'v; Lv/Lu"0 at the points (u, v) for which v'u

b
B

u v u k
1

c
1

0)50 10)31 5)46 21)64 1)43 15)10
0)50 2)25 11)61 23)17 1)55 14)98
0)75 10)96 4)35 22)82 1)52 15)03
0)75 2)35 12)52 26)42 1)96 13)50
0)90 11)14 4)13 23)70 1)59 14)88
0)90 2)72 13)18 26)45 2)03 13)06
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Table 3 gives similar values for cases where b
A
Ob

B
(b

A
"0)25). Also here, the changes in

c
1

for given b
A

and b
B

are not large. If one point on the stability curve is known,
a reasonably accurate estimate on how a change in one flow speed affects the other can be
obtained from equation (24) with c

1
assumed to be a constant. Equation (24) can then be

rewritten in the form

Au!
1

2
c
1
Jb

AB
2
#Av!

1

2
c
1
Jb

BB
2
"A

1

2
c
1
Jb

A
#b

BB
2
. (28)

This is simply a circle with radius"1/2c
1
Jb

A
#b

B
and centre in 1/2c

1
(Jb

A
, Jb

B
).

Figures 2 and 4 show that most parts of the stability curves are indeed circle sections. This
reflects that the effects of the two individual flows, with good approximation, are directly
additive here. The estimate from equation (28) is of course not useful across any inflection
on a stability curve. Equation (28) is particularly useful for estimating the critical flow-speed
pair for two identical pipes conveying identical fluids at different flow speeds from the
knowledge about the critical flow speed for a single pipe. For example, if the flow speed v in
pipe B is set as 0)6 times the critical flow speed for a single pipe, what is the new critical value
of the flow speed u in pipe A? Table 4 shows such estimates, compared with results from
finite element calculations. The values for b"0)25, 0)75and 0)90 agree to within 1%. The
values for b"0)5 agree to within 2)5%. It is emphasized, however, that equation (28) can



TABLE 4

Comparison of approximate ‘‘two-pipe’’ critical flow speed values (u
51

, v
51

)"(u
51

, 0)6u
41

), estimated
from the known critical flow speed u

41
for a single pipe by use of equation (28), with ‘‘true’’ values

(from finite element calculations)

b
A
"b

B
u
41

c
1

u
51

for v
51
"0.6u

41
u
51

for v
51
"0.6u

41by eq. (24) by equation (26) by FEM

0)25 6)21 12)43 7)46 7)43
0)50 9)32 13)18 11)18 11)46
0)75 13)14 15)17 15)76 15)90
0)90 14)33 15)11 17)20 17)16

Figure 8. Phase-angle distributions for five flutter cases. I: b
A
"b

B
"0)25, u"v"6)21; II: b

A
"b

B
"0)25,

u"7)51, v"2)73; III: b
A
"b

B
"0)90, u"v"14)33; IV: b

A
"0)25, b

B
"0)90, u"11)14, v"4)13; V: b

A
"0)25,

b
B
"0)50, u"10)31, v"5)46.
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only give a useful ‘‘first estimate’’, as jumps and inflections on the stability curves may occur,
as seen in Figures 2 and 4.

6. FLUTTER OSCILLATIONS

Figure 8 shows the phase-angle distributions h (m) for five flutter cases which are points on
the stability curves in Figures 2 and 4. The curves labelled I and III are for two identical
fluids (b

A
"b

B
"0)25 and 0)90, respectively) flowing with identical speeds at the flutter

limit (u"v"6)21 and 14)33, respectively). These systems are thus equivalent to single
pipes. That the phase-angle h decreases for increasing m explains the well-known ‘‘dragging’’
nature of the oscillations. Except for a small part near the clamped end, h is approximately
a linear function of m. Thus, the wavenumber function k(m)Kk

1
, the wavenumber at the free



Figure 9. Flutter oscillations. The diagrams refer to the direction of motion of the free end. (a) b
A
"b

B
"0)25,

u"v"6)21; (b) b
A
"b

B
"0)90, u"v"14)33; (c) b

A
"0)25, b

B
"0)50, u"10)31, v"5)46; (d) b

A
"0)25,

b
B
"0)90, u"11)14, v"4)13.
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end. This means that the bending wave travelling along the tube travels approximately with

the flow speed º (in dimensionless variables, with the speed u/Jb ). This is manifested in the
well-known ‘‘smooth’’ flutter-oscillations, as depicted in Figures 9(a, b). Solid lines corres-
pond to upward motions of the free end; dashed lines to downward motions. The time step
between the lines is *q"n/ (8u).

Curve II is also for two identical fluids (b
1
"b

2
"0)25) but now the fluid in pipe B flows

at v"2)73, the most stabilizing value. The flow speed in pipe A is u"7)51. The phase speed
of the travelling bending wave will be slightly more varying than that associated with Curve
I. Curve V corresponds the root-locus diagram shown in Figure 5(b), that is b

A
"0.25,

b
B
"0)50, u"10)31 and v"5)46. Here there is a steep drop in the phase-angle for

0)2(m(0)4. For m'0)5, k (m)Kk
1
, as for curves I and II. The flutter oscillations are

shown in Figure 9(c). It is remarkable that the amplitude is very small for a part near the
clamped end. The situation is similar in Figure 9(d) which shows the flutter oscillations of
a pipe with b

A
"0)25, b

B
"0)90, u"11)14 and v"4)13 (the most stabilizing speed). The

corresponding phase-angle is included in Figure 8 as Curve IV.
The amplitude reduction near the clamped end can be understood by imaging the flutter

oscillations expanded in eigenmodes (eigenfunctions), as by Galerkin’s method. As the value
of b (for a single pipe) is increased, higher and higher modes become significant. This can be
seen by comparing Figures 9(a) and 9(b). Superposition of the oscillation initiated by the
flow through pipe B alone with those initiated by the flow through pipe A alone gives
a ‘‘destructive interference’’ near the clamped end. This can be seen by imaging a direct
superposition of Figures 9(a) and 9(b).
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In terms of equation (22) flutter occurs when *¼'0, meaning that during one period of
oscillation, the fluid jet has delivered more energy to the system (solid#enclosed fluid) than
can be dissipated by the fluid damping mechanism. As explained by Benjamin (1961), this
can only occur if (Lg/Lq)m/1

and (Lg/Lm)m/1
are sufficiently out of phase such that (Lg/

Lq]Lg/Lm)m/1
(0 during most part of the time interval [q

1
, q

2
]. This ‘‘sloping backwards’’

of the tip end is likely reduced when the length of the vibrating part is decreased. This
provides a possible physical explanation of the stabilizing effect of the flow in pipe B.

The ratios (u
#3

for v"0)/(u
#3

for v"‘‘the most stabilizing value’’) appear to be close to
the lengths of the ‘‘fully’’ vibrating pipe parts. For Figure 9(c), the ratio is 6)97/10)31+0.68
and for Figure 9(d), 6)97/11)14+0)63. [It is noticed that the (physical) critical flow speed
º

#3
in a single pipe is increased proportionally to the reduction of the length ¸; see the

definition of the dimensionless flow speed u in equation (8)].

7. CONCLUSION

Dynamic stability of a cantilevered two-pipe system conveying different fluids has been
investigated. Various aspects concerning the energy balance between the solid and the two
‘‘competing’’ axial fluid flows have been discussed. The main conclusions are the following.

(1) One fluid flow may dissipate energy delivered to the system by the other flow, thus
acting as a stabilizer. The stabilizing effect is largest when the mass ratio of the stabilizing
flow is large. In some cases, however, addition of fluid damping may have a destabilizing
effect, especially when the mass ratio of one fluid is very small.

(2) In the case of two identical pipes conveying identical fluids, when one pipe has
‘‘forward’’ flow and the other pipe ‘‘reverse’’ flow, the fluid damping cancels out and the
total fluid loading is reduced to a pure ‘‘follower’’ load. The system is thus, in principle,
reduced to Beck’s column.

(3) At the flutter limit, the phase speed of the travelling bending wave at the free end of
the two-pipe system equals (total momentum flux)/(total mass flow rate). Phase angle plots
show that the phase speed is approximately constant along the downstream half of the
pipes.

(4) The phase speed [the ratio (total momentum flux)/(total mass flow rate)] at the free
end varies only slightly along parts of the flutter boundaries (stability curves). This gives
a very simple approximate relation between the two flow speeds there.
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APPENDIX: NOTATION

c
L

phase speed of the travelling bending wave evaluated at the free end
c
1

dimensionless phase speed of the bending wave at the free end
C Coriolis matrix
d complex eigenvector
EI

A
, EI

B
bending stiffnesses

GJ torsional stiffness
k
1

wavenumber at the free end
¸ total length of the pipe system
m

1
, m

2
specific masses of pipes (mass per unit length)

M
A
,M

B
specific masses of fluids (mass per unit length)

M mass matrix
N

e
number of finite elements

Q fluid load matrix
r polar radius of gyration
S stiffness matrix
t time
¹

1*1%4
kinetic energy of empty pipes

¹
&-6*$

kinetic energy of enclosed fluid
º, » fluid speeds
u, v, w dimensionless fluid speeds
»

1*1%4
potential (elastic) energy

¼,*¼ work
x distance along tube
y lateral deflection
a stability parameter
b
A

the ratio (mass of fluid in pipe A)/(mass of fluid-filled pipe A)
b
B

the ratio (mass of fluid in pipe B)/(mass of fluid-filled pipe B)
g dimensionless lateral deflection
g
c

dimensionless lateral deflection in complex representation
j complex eigenvalue
k the ratio (mass of fluid-filled pipe B)/(mass of fluid-filled pipe A)
m dimensionless distance along the tube
p the ratio (stiffness of pipe B)/(stiffness of pipe A)
q dimensionless time
u torsional angle
u dimensionless frequency parameter
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